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CRACK GROWTH IN A SATURATED POROUS MEDIUM DUE TO PASSAGE OF A CURRENT PULSE 

V. I. Selyakov UDC 622.245.5/088.8 

A solution has been obtained [i] for the growth of a crack in a continuous medium in re- 
sponse to the thermoelastic stresses produced by passing a current perpendicular to the crack. 
Here we consider a model describing the action of a current pulse on a saturated porous med- 
ium when the current flows through a crack filled with liquid of high electrical conductivity. 
It is assumed that the medium has a skeleton of low electrical conductivity and is penetrated 
by capillaries filled with an electrically conducting liquid. Then the effective conductiv- 
ity Oo is determined by the microcapillary conductivity. We consider the case where the di- 
rect current is passed through two coaxial elliptiGal cracks filled with liquid having a high 
conductivity oi. The crack opening is characterized by the parameter B = c/l, where c is crack 
width and ~ is length. If the crack is very much open (B >> Oo/Ol), the current supplied to 
the center of the crack will emerge from the ends, and near the ends the current density will 
be maximal, as will the corresponding ohmic losses. The heating in the pores increases the 
pore pressure and may cause the medium to fail at the crack vertex. Here we use methods from 
the theory of complex variable functions to solve the two-dimensional problem on the current- 
density distribution around a crack, and the Blot theory [2] is used to discuss the consolida- 
tion of ground and to estimate the parameters of the electrical pulse that disrupts the medium. 

i. Current-Density Distribution. We consider the current-density distribution when the 
current flows through two elliptical cracks, with the source and antisource at the centers of 
these. We assume that the current is supplied through parallel infinitely long electrodes 
whose transverse dimension is much less than the crack width. The conductivity of the elec- 
trodesis much larger than that of the liquid within the cracks. This enables one to restrict 
consideration of the planar two-dimensional case. Figure 1 shows the track geometry. The po- 
tential distribution in a plane perpendicular to the electrodes satisfies the Laplace equa- 

tion [3] 
div(%v~v) . . . .  ( I / 2 ~ ) [ 6 ( =  - -  ~ , )  - -  6(z -- z2)], ( i . i ) ,  

where v = 1 or 0. Here the potential q~ with subscript v = 0 corresponds to the region out- 
side a crack, while that with subscript v = 1 corresponds to the region within the crack, z = 
x + iy is the complex variable, x and y are Cartesian coordinates, zl and z2 are the coordi- 
nates of the centers of the first and second ellipses correspondingly, I is the current in- 
jected into the crack per unit electrolength, and ~(z) is a Dirac function. The conditions 
for continuity of the potential and the normal component of the current density should be 
satisfied on the crack. We introduce the complex potential F v = o~ v and write these condi- 

tions in the form 

ReFu--~ReFl; (1.2) 

! 

I 

Fig. 1 
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IIllFo = = h n F l '  ( 1 . 3 )  

where a = Oo/Oz. The e x p r e s s i o n s  Re Yv = 1/2(Fv + F~) and Im Fv = 1 / 2 i ( F v - - F v )  d e n o t e  c o r r e -  
s p o n d i n g l y  the  r e a l  and i m a g i n a r y  p a r t s  of  t h e  p o t e n t i a l .  Here and s u b s e q u e n t l y  an o v e r b a r  
i n d i c a t e s  t h a t  we t ake  the  conj luga te  v a l u e  of  the  complex f u n c t i o n .  We add (1 .2 )  and ( 1 . 3 )  
to get a relation at the crack contour: 

+ I  ~ ~-1 
F o_ ~--t1+--F1. (1.4) 

Also, the real parts of the potentials should be bounded in the regions of definition, apart 
from the points zl and= z=, at which lie the source and antisource. The potential Fo may be 
determined in the form 

F~ " 2n ln z ~ - v l ' ~  ' 

where F~ is a function analytic in the region outside the crack. We perform a conformal 
mapping of the region outside the ellipses on the region outside unit circle. The mapping 
function takes the form 

z i L =  ~(~) = R ( ~ @ @ ) '  (1 .5 )  

where n = (l -- c)/(~ + c), ~ = pexp(ie), e is the polar angle, and 2L is the distance between 
the centers of the cracks. In what follows, without loss of generality we assume that R = i. 
The mapping of the crack contour onto the contour of unit circle occurs when ~ = ~ = 
exp(ie). It has been shown [4] that F~ can be represented as a Lorant series containing only 
terms with negative powers, as follows from the condition that the potential is bounded: 

hF a 
, t  [ ah a h , ~ ( - -  t )  h ] 

~o . . . .  ~ - ~ + ' =  l~ ( z - - l ' ) /~k=l  [;(z-i-L)l I ( 1 . 6 )  

where ak are the coefficients in the Lorant series. In writing (1.6), we have used the fact 
that F~ is an odd function. Similarly, the potential F~ can be put in:the form 

e 1 = - -  / . ~ / h l  z --" L ~_ FI} ,  
2~ [ z@L 

where  F~ i s  a f u n c t i o n  a n a l y t i c  w i t h i n  an e l l i p s e  and can be r e p r e s e n t e d  as a s e r i e s  i n  Fabe r  
p o l y n o m i a l s  [ 4 ] :  

Then one can solve (i.i) by determining the unknown coefficients a k and bk, which can be 
found from (1.4). It follows from the symmetry that if Fo and FI satisfy (1.4) on z -- L = o 
+ n/o, then they automatically satisfy that condition also on the contour z + L. Therefore, 
in what follows the entire discussion relates to the right-hand contour. The expression for 
the potential contains the small parameter e = I/2L < 1/4, which enables us to simplify the 

procedure for determining a k and b k substantially by using the small-parameter method. We 
use (1.5) and perform a series expansion in E for the function ~(z + L), which is analytic 

on the contour of the right ellipse, to get up to terms in ~4 that 

~-l(z@ L ) =  e - - z ' e 2 @  e~(n@z *~) - -  s~z*(3n@z*) ~, 

where z* = z -- L. We retain terms in the expansion with powers of e not greater than 4, and 
then analogous expressions can be obtained for the function ~-k(z + L). We substitute the 
expressions for FI and Fo into (1.4) to get the function $(o): 

O ( o ) = F o ( g ) - - - - ~ - F I ( O ) - - - - P l ( ~ ) = O .  

We s p e c i f y  t h a t  ~(~) i s  o r t h o g o n a l  to  t h e  sy s t em of  f u n c t i o n s  o • (k = 0 ,  1, 2,  3 , 4 ) ,  which  
gives us a system of algebraic equations for the a k and b k. The coefficients found by solv- 
ing the system take the form 

% ~  1~~.~](1-~), ~~-~'~Y~~ ~0.s~(i-~)' 
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%~ . . . .  2[~l+g-'4-2s 4(i ~), b,..~---I l-:-~e,-2[e. 4~2 (1 ~), 
a + 2~ z 2 ~ n- 
83 g3 

The latter coefficients with accuracy up to s 4 take the form 

%P+1:b2~+I~O' a~P:(-- I')~ [J-- (I+ ~)'~'2P-P(~--I) ] (|-~)'(~--l)n''v-<(~' @1) 

n. p a--| 
b2p : (-- I)P2~;~2P(~ - - 1 ) - ~ - ( ~ @ | ) '  p=:2, 3 . . . . .  ~ .  

For a § i, the coefficients a k and b k tend to zero, and Fo and FI give the solution for the 
potential distribution in an infinite plane containing a source and antisource, as would be 
expected, with these lying correspondingly at the points zl and z=: FI = Fo = --(I/2~)in 
(z -- zl)/(z -- z2). It can be shown that for E § 0 and ~ § 0 we have Fo § --(I/2~)in~ and we 
get a known solution for a plane with a line of discontinuity, on which the value of the func- 
tion is given as a constant~ We note that as s < 1/4, the interaction between the cracks 
has little effect on the solution, which virtually coincides with that for the case of a sin- 

gle crack (s = 0). The current density Jx within the crack is given by Jx = (3/3x)Re F1]y=o, 
As the main term in the expansion of F[ is that containing b=, we find the main term in the 
expression defining the current density near the vertex of the crack: 

/ ] q - ~ - 2 ~  '~' (1.7) 

where x~ is the reduced distance from the crack center. At the crack vertices, ]xl] = 1 + n. 
An important conclusion follows from (1.7). If the crack is very much open (2B >> ~), then 
virtually all the current injected into the crack flows through the conducting liquid within 
it and emerges at the ends of the crack. The current density is dependent on c (crack width) 

and is defined by Jx ~ I/~c near the vertex. If the crack is only slightly open, (2~ << e), 
only a small fraction of the currenti:flows along it, since the resistance of the crack is 
large by comparison with that of the surrounding material. Then most of the current flows 
through the medium outside the crack and is hardly affected by the latter. 

It is of interest to estimate the effective resistance of the medium per unit length 
of the electrodes, between which afpotential difference AU is maintained: Ref f = AU/I. As 
o~ >> ~o, we get 

t~ff. ~ _k  [ht 8L :1 -}-'2,{ e -}-3~'1 
a%L l t -i- ~1~ ~" (1o8) 

I t  i s  e v i d e n t  f rom ( 1 . 8 )  t h a t  t h e  e f f e c t i v e  r e s i s t a n c e  i s  o n l y  s l i g h t l y  d e p e n d e n t  on t h e  d i s - -  " 
t a n c e  b e t w e e n  t h e  c r a c k s  and  i s  d e t e r m i n e d  i n  t h e  m a i n  by ao .  

2. Damage to  Medium. The h e a t  p r o d u c t i o n  i n  t h e  p o r e  s p a c e  n e a r  t h e  v e r t e x  o f  a c r a c k  
c a u s e s  t h e  l i q u i d  to  e x p a n d  and  c o r r e s p o n d i n g l y  r a i s e s  t h e  p o r e  p r e s s u r e ,  and  i f  t h i s  r i s e  {s  
s u f f i c i e n t l y  r a p i d  a n d  t h e  p r e s s u r e  c a n n o t  be  d i s s i p a t e d  by i n f i l t r a t i o n ,  t h e n  t h e  porof l s  
medium may be  damaged .  We now e s t i m a t e  t h e  p a r a m e t e r s  o f  t h e  c u r r e n t  p u l s e  f o r  w h i c h  damage 
o c c u r s .  The f o l l o w i n g  e q u a t i o n s  [5]  d e s c r i b e  t h e  s t a t e  o f  s t r a i n  i n  t h e  medium w i t h i n  t h e  
B i o t  g r o u n d  c o n s o l i d a t i o n  t h e o r y :  

~,~u + (~ + ~M) w := %MVr (2.  l )  

aAr O$/ot, ( 2 . 2 )  

w h e r e  u and  t a r e  Lam~ c o n s t a n t s ,  U i s  t h e  s l e k e t o n  d i s p l a c e m e n t  v e c t o r ,  m i s  t h e  p o r o s i t y ,  
e i s  t h e  v o l u m e  d e f o r m a t i o n  o f  t h e  s k e l e t o n ,  mez i s  t h e  b u l k  d e f o r m a t i o n  o f  t h e  l i q u i d ,  ~ 
i s  t h e  p o r e - p r e s s u r e  c o e f f i c i e n t ,  mM i s  t h e  c o m p r e s s i b i l i t y  m o d u l u s  f o r  t h e  p o r e  l i q u i d ,  k ,  
i s  t h e  i n f i l t r a t i o n  c o e f f i c i e n t ,  a = ( t  + 2 u ) } ~ , / ( ~  + aiM + 2~) i s  t h e  c o n s o l i d a t i o n  c o e f -  
f i c i e n t ,  t is time, and g =-m(sl -- e). 

Equations (2.1) and (2.2) describe the state of stress in the medium with allowance for 
the infiltration, which follows Darcy's law. Estimates show that the characteristic times 
for the infiltration processes are much less than the characteristic times for heat trans- 
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fer between the liquid and the skeleton. Therefore, heat transfer is neglected. We consider 
the case where the energy is deposited in the pore space in a time ATI << c2/a, i.e., virtually 
instantaneously. In that case, the pressure does not have time to be dissipated by infiltra- 
tion, and the bulk deformation of the liquid is determined by AT, the temperature rise in the 
liquid in the pore space: 

~,~ t . . . .  , 4 ~ l a r ,  where ,_At -= E/(c t t) t ) .  ( 2 . 3 )  

Here B~ is the thermal-expansion coefficient of the liquid, c I and Pl are correspondingly the 
specific heat and density of the liquid, and E = j=AT1/(moo) is the density of the energy 
deposited in the pore space. In writing the expression for the energy density, allowance has 
been made for the fact that the energy is deposited only in the pore space, since tile skele- 
ton is taken as nonconducting. We retain the main term in (1.6) for Fo and use the fact that 
j2 = l(~/3z)Fo] 2 to get the distribution of the ohmic loss in the region of the crack vertex: 

-~0i'aT1~ --,. a (2.4) ~ (P ~ 2np~ cos 20 @ n ~) (1 <~ p < oo). 

We see from (2.4) that the maximum heat production occurs at the vertices of the crack with 
p = 1 and @o = 0 and ~ in a region with characteristic size of the order of B. The heat pro- 
duction at the vertex decreases rapidly away from it in accordance with the law 

72A h ~ A~I I ( 2 . 5 )  
% % (P + ap) 2 + (A0) 2 ' 

where Ap = p -- i; A@ = (@ -- @o). For further estimation, we approximate the distribution of 
the energy production near the vertex of the crack by means of an expression that takes the 
following form in a polar coordinate system (r, ~) having its center at the vertex of the 
crack: 

E : ~ exp (-- r"/[~), (2.6) 
re%p" 

~ h e r e  r 2 = (x~ --  1 --  n)  2 + y 2 ;  Y = r s i n  ~ .  I t  c a n  b e  shown t h a t  f o r  ( r / B )  << 1 e x p r e s s i o n  
(2.6) goes over to (2.5). The model distribution of (2.6) is used to find the solution to 
(2.1) and (2.2). 

The solution to (2.1) can be found by Goodyear's method [6]. We put U i = 3~/~xi, which 
shows that equations (2.1) will be satisfied if ~ satisfies 

rzlM 
A ~ - -  Xq_alM+2~t  g(~). ( 2 . 7 )  

Knowing ~, we can find the stresses in the skeleton, which are defined by the following [5] 

~j : 2~e~j + [(~ -,'- a~M) e + ~ ? f ; ]  % ,  ( 2 . 8 )  

wilere ~ij is the strain tensor and 6.ij is the Kronecker delta. The time dependence in ~(t) 
is described by (2.2), in which we need to incorporate the term Q that allows for the bulk 
deformation of the liquid on the instantaneous heat production. From (2.3) and (2.6) we get 

aA{ q- Q6(t) ~- o~/ot, ( 2 . 9 )  

where Q = mB~ATexp(--r2/Bz). We put ; = 0 at the initial instant and use a Hankel transfor- 
mation [3] with respect to the coordinate r and a Laplace transformation with respect to time 
to get the solution to (2.9) for an instantaneous energy source: 

; (t) = m[~, --~ I~ ~ exp (-- fi/q), ( 2 . 1 0 )  

where ~(t) = ~2 + 4at. Expression (2.10) for BZAT = const and ~ § 0 becomes the standard 
expression for an instantaneous point source in an equation of parabolic type. 

We substitute (2.10) into (2.7) and use a Hankel transformation to find the ptoential 
and correspondingly an expression for o from (2.8): 

--  (1 T - ] i - )  exp (-- o~w = A A x l ~ [  l " , 2 r '  r~/,l)], ( 2 . 1 1 )  

12( 2~; 12 f i 051~tJl~ 
where A = ~ \ 2 ~  / clploo(~_ff~M_/2~!). As ~ is.independent of ~, it follows from (2.8) that 
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~rr = --(2~/r)(8~/3r). As would be expected, the stresses decrease with the passage of time 
when there is instantaneous energy deposition: a~pm § 0 for t § .~ It follows from (2.11) that 

tensile stresses arise when the liquid is heated, which can disrupt the skeleton if o~r. m = ~*, 
where ~* is the limiting tear stress. If on the other hand (amm -- arr) = ~*, where ~* is 
the limiting shear stress, one can get failure in shear. The maximal values of amr and 

~*~ --Orr are attained at the initial instant for r=/~ ~ 2. In this region, the condition 
for failure in shear with a << 2~ takes the following form for the case of instantaneous 

energy deposition: 

2,41~ , t8L( /z'~ ) cq,,M ~ * ,  
,~ (-~z in \ c l p  l ); _]_ c,~M q• 2~ ( 2 . 1 2 )  

where  E~ v (I=k~:,/~roo)ln(8L/l) i s  t h e  e n e r g y  i n j e c t e d  i n t o  t h e  medium p e r  u n i t  l e n g t h  o f  t h e  
electrodes. If a current constant over time is passed through the crack, the stresses in the 
medium can be found by means of a Duhamel integral [3]: 

t 

or %r (t -- T) d-c. 
0 

We substitute for ~m from (2.11) into the Duhamel integral to get 

r" t 4a ( 2 , 13 )  

o § A(i/4a), so on passing a constant In the case (r2/c 2 + 4at) << l (t >> c2/4a), we have omm 

current one gets the maximal tensile stresses at r = 0, and their value for t > c=/4a is in- 
dependent of time and is governed only by the density of the current emerging from the vertex 
of the crack. The following relation gives the minimum value of current injected per unit 
electrode length that will produce shear failure on the assumption that 2B >> a: 

i ~2~ {~: ~*ac l o,~ ao ~ ~ ~M-~2~ } 1/2 
I ~%M - " (2.14) 

We note that (2.12) and (2.14) give estimates of the current density required for crack growth 

in limiting cases. The relation of (2.12) has been derived on the assumption that the liquid 
does not have time to escape from the energy-production zone during the current pulse. There- 
fore, infiltration can only increase the I derived from (2.12). The value of I in (2.14) on 
the other hand has been derived within the framework of the Biot consolidation theory, which 
assumes that Darcy's linear law applies. It is known [7] that the linear relationship be- 
tween the infiltration rate and the pressure gradient ceases to apply as the gradient in- 
creases. Then the infiltration rate is substantially less than that calculated from Darcy's 
law. For this reason, (2.14) would give an elevated value of I. Also, the following may 
have a substantial effect on the dissipation of the pore pressure near the crack vertex: liq- 
uid infiltration along the crack, variation in the permeability of the medium because of 
change in the state of stress and change in the viscosity of the liquid due to the heating. 

One can incorporat e these factors into (2.14) by using an effective consolidation coef- 
ficient a*. We estimate I for the case 2B >> m. We put T* = 2"107 N/m 2, a~M/(~ + a~M + 
2~) = 2"10 I~ N/m 2, a* = I0 -~ m2/sec, ~o = i0-3(3"m) -z, Bz = 2"10-adeg -I, Cl = 4.18"103 J/kg" 
deg, and 01 = 103 kg/m3, and then from (2.14) we get I ~ 4-102 A/m. To calculate I from 

(2.12), one needs to know not only the above parameters but also the value of Bl, which de- 
termines the characteristic size of the energy deposition region, together with 5TI, the 
deposition time, which should satisfy the condition 5TI << (~l)2/a *. In principle, B1/4 is 
equal to the crack width. However, when the crack is filled with a liquid of high conduc- 
tivity, it penetrates through the walls, and as a result there is a layer of elevated con- 
ductivity around the crack. This may alter the eccentricity of the conducting ellipse and 
therefore increase the characteristic size of the deposition region. That region can then 
be characterized by the effective quantity B*l. We take the parameters of the medium as 
being as before, and with B*l = 5"10 -s m, ATz = 2-10 -5 sec we get from (2.12) that I approxi- 
mately equals 3"102 A/m, which is less than the value given by (2.14), as would be expected. 
In accordance with (2.12), I decreases as $*1 decreases, I ~ B*l. However, there is a lower 
bound to I, which is associated with the need to obey the condition 2B* >> @o/~i. If this 
condition is not obeyed, the current density at the vertex of the crack falls as ~2B*/(2B* + 
ao/o~), which reduces the mechanical action~of the current and correspondingly makes it neces- 
sary to increase the value of I to produce damage. In the case of instantaneous deposition, 
(2.3) gives the temperature change in the pore space as 
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41 ~ A~ 1 

~T~ (~,l)2aoclp.l m. 

We take the porosity as m = 0.i to get AT ~ 83~ The corresponding change in the pressure 
can be estimated if we assume that the compressibility of the skeleton is much less than that 
of the liquid, the formula being Ap = (b~/y)AT, where y is the hulk compressibility of the 
liquid. For water, (~/X) ~ 4 "I0~ N/(m2"deg) [8], and the corresponding pressure change is 
Ap ~ 3"10 ~ N/m 2, which is comparable with the characteristic damaging stresses. In principle, 
a phase transition may occur as the temperature increases, which may alter B~ and y. How- 
ever, the equation of state for water [9] implies that ~ and X may be taken as constant over 
fairly wide ranges in temperature and pressure, even when there is a phase transition. These 
results only represent estimates, because the discussion is based on a model, and also he- 
cause there is some uncertainty over the choice of B* and a*, which should be determined by 
experiment. 

We now discuss the applicability of the model. The crack growth has been considered in 
the macroscopic approximation, which requires obedience to the condition $*1 >> d, where d is 
the characteristic dimension of the inhomogeneity in the medium, for example the micropore 
size. Therefore, the estimates apply only for cracks of sufficiently large opening that meet 
this requirement. To estimate the current density at which crack growth begins, it is neces- 
sary to allow for the effects of the highly conducting layer formed around the crack due to 
the filling with liquid of high conductivity. This liquid infiltrates through the side sur- 
face of the crack and may displace the liquid that saturates the porous medium. As a result, 
a highly conducting region of elliptical form arises around the crack. The solution for the 
current distribution around this region coincides with that given here. The other formulas 
defining the current density for the start of damage at the vertex of an elliptical crack of 
high conductivity also apply. However, in the corresponding formulas one should replace ~1/4, 
which is equal to the crack width, by B'l/4, which characterizes the thickness of the layer 
around the crack. Also, if the condition c/1 >> ~o/o~ is obeyed and the crack length is much 
greater than the electrode diameter, the formulas apply even if the condition implying small- 
~ess of the electrode diameter relative to the crack width is not obeyed. Also, the Biot 
theory used does not incorporate inertial effects associated with the establishment of an 
equilibrium stress distribution. Therefore, the instantaneous deposition model applies only 
for deposition A~ >> B*l/4c*, where c* is the speed of sound in the skeleton. If on the 
other hand energy E sufficient to damage the medium is deposited in a time A~ < B*l/4c*, 
the damage may be explosive. 

Here we have considered the crilical current density at which damage occurs around the 
vertex of the crack. It is then possible for other processes to occur such as further crack 
growth and the formation of crack rosettes. There may also be a substantial effect on the 
damage from the hyperfine structure at the ~nd~o~!t~e cracks in the saturated porous mater- 
ial. If the initial crack is not elli~tli~ll and'if;!the opening at the ends is comparable 
with the characteristic size of the mi~ro~pillaries, then there may he extensive heat produc- 
tion not only near the vertices of t~e~eracks~but also around the ends. In that case, the 
elevated pressure at the ends of th~crank may increase the stress-~ensity coefficient at 
the vertex and reduce the current~ density at which crack growth begins. 
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